Spintronics in Nanostructures (16877-01)

Denis Bulaev

Summer Semester 2007

daystimeplaceLecturesevery Wednesday10:15-12:00Room 4.1 (Institute of Physics)Exercisesevery Tuesday10:00-11:00Room 4.1 (Institute of Physics)

Assistant Mircea Trif (office 4.4, e-mail: Mircea.Trif@unibas.ch)

I. SYMMETRY IN SOLID STATE PHYSICS

Lecture 1

1. Introduction to Symmetry in Physics

Symmetry is most basic and important concept in physics. Every process in physics is governed by selection rules that are the consequence of symmetry requirements. For example, **momentum conservation** is a consequence of translational symmetry of space ($\mathbf{r} \rightarrow \mathbf{r} + \mathbf{a}$, $\mathbf{a} \in \mathbb{R}^3$), **energy conservation** is due to translation symmetry of time $(t \rightarrow t + \tau, \tau \in \mathbb{R})$, and **angular momentum conservation** is the consequence of spacial rotation invariance. These are so called **continuous symmetries**. There are **discrete symmetries**: time reversal symmetry ($t \rightarrow -t$), spacial inversion symmetry ($\mathbf{r} \rightarrow -\mathbf{r}$), charge reversal symmetry ($q \rightarrow -q$), etc.

In quantum mechanics eigenstate properties of a Hamiltonian (or an other operator which describe a quantum system) and the degeneracy of eigenvalues are governed by symmetry considerations. Beauty of theory group is that we can translate the heavy and complex language of symmetry operations into a language of a very simple linear algebra.

2. Basics of Group Theory

Definition 1. A group G is a (finite or infinite) set of elements g_1, g_2, g_3, \ldots having the following properties:

1) The product of any two elements of the group is itself an element of the group: $\forall g_1, g_2 \in G \exists g_3 \in G : g_1g_2 = g_3$. 2) The associative law of multiplication holds: $g_1(g_2g_3) = (g_1g_2)g_3$.

3) Among the elements of a group there is one and only one element, called the identity of unit element e, which has the property $ge = eg = g \ \forall g \in G$.

4) Each group element g has an inverse element g^{-1} such that $gg^{-1} = e$: $\forall g \in G, \exists g^{-1} \in G : gg^{-1} = e$.

In general, the elements of a group do not commute: $g_1g_2 \neq g_2g_1$.

Definition 2. Group G_A in which $g_1g_2 = g_2g_1 \forall g_1, g_2 \in G_A$ called as an Abelian group.

Definition 3. Order of a group G, denoted as |G|, is the number of elements in the set G.

Definition 4. A subgroup is a collection of elements within a group that by themself form a group.

Theorem 1. If in a finite group an element x is multiplicated by itself enough times (n), the identity $x^n = e$ is eventually recovered.

Definition 5. The order of an element x is the smallest value of n such that $x^n = e$.

Definition 6. Each element of a finite group may be represented as a power or product of powers of a certain finite number of elements called **generators** of the group.

Definition 7. An element $b \in G$ conjugate to $a \in G$ is by definition $b = xax^{-1} \exists x \in G$.

Definition 8. A class is the total set of conjugated elements.

Theorem 2. All elements of the same class have the same order.

Definition 9. A group consisting of elements $e, a, a^2, a^3, \ldots, a^{n-1}$ $(a^n = e)$ is said to be cyclic group.

3. Point Groups

Any transformation which brings a body into coincidence with itself can be decomposed into elementary transformations:

- 1) rotation about an axis,
- 2) reflection in a plane,
- 3) translation by some vector.

The symmetry group of a body of finite dimensions cannot contain a translation, since for any finite body there must be a fixed point, namely, the center mass.

Definition 10. A symmetry group in which there is a fixed point common to all transformations of the group is called *a point group*.

Here is the list of all "elementary" elements of point groups:

- e is the identity,
- c_n is the rotation through $2\pi/n$ angle,
- σ is the reflection in a plane,

 σ_h is the reflection in a *horizontal* plane (perpendicular to the axis of highest rotational symmetry),

 σ_v is the reflection in a *vertical* plane (parallel to that axis),

 σ_d is the diagonal reflection in a plane through the origin and the axis with the 'highest' symmetry, but also bisecting the

i is the inversion $(x \to -x, y \to -y, z \to -z)$,

 s_n is the improper rotation through $2\pi/n$ angle ($s_n = \sigma_h c_n$ is the rotation followed by reflection in horizontal plane), ic_n is the compound rotation-inversion.

There are only **fourteen types** of finite point groups: $C_n, S_{2n}, C_{nh}, C_{nv}, D_n, D_{nh}, D_{nd}, T, T_d, T_h, O, O_h, Y, Y_h$.